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Space-times for which N+ (future null infinity) is not necessarily homeomorphic 
to R x S 2 are considered. It is shown that, depending on the global conformal 
structure of #+, a given space-time either (1) possesses an asymptotic symmetry 
group with a normal subgroup of supertranslations, similar in structure to the 
BMS group, or (2) possesses a simpler kind of asymptotic symmetry group, not 
involving supertranslations, or (3) has no asymptotic symmetry. The setting is 
Newman and Unti's approach to asymptotically fiat space-times and use is made 
of the characterization of the asymptotic symmetry transformation as a conformal 
motion of ~+ that preserves null angles. 

1. I N T R O D U C T I O N  

This p a p e r  is a sequel  to an ear l ier  one (Foster ,  1978), which cons ide red  
var ious  app roaches  to a sympto t i c  symmet ry  and  in te rpre ted  them in terms 
o f  the confo rma l  a p p r o a c h  o f  Penrose.  The space- t imes  cons ide red  were 
those  tha t  sat isf ied the  cond i t ion  for a sympto t i c  flatness p r o p o s e d  by  
N e w m a n  a n d  Unt i  (1962), which is less restr ict ive than  that  usua l ly  a d o p t e d ,  
in that  it does  not  require  # §  to be h o m e o m o r p h i c  to R x S  2. By a l lowing 
more  genera l i ty  in the s t ructure  of  #+ ,  one can invest igate  how tha t  s t ructure  
de te rmines  the  a sympto t i c  symmetry.  This seems to be the sort  of  ques t ion  
N e w m a n  and  Unt i  ra i sed  in the closing remarks  of  the d iscuss ion  in thei r  
paper ,  r emarks  that  p r o v i d e d  some of  the mot iva t ion  for the presen t  paper .  
However ,  the  main  mot iva t ion  was a desire  to u n d e r s t a n d  the or igin of  
super t rans la t ions ,  which  are a feature  o f  the  BMS group  (Bondi  et aL, 1962; 
Sachs,  1962), the a sympto t i c  symmet ry  g roup  when # + is h o m e o m o r p h i c  
to R x S  2. 
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As is shown below, there are two extremes: one in which there is no 
asymptotic symmetry  and the other in which 5 ~+ is conformal to a product  
manifold and the asymptotic symmetry group is a semidirect product, one 
factor of  which comprises supertranslations. In between there is a variety 
of  special cases where asymptotic  symmetry groups exist, but none of  these 
contains supertranslations. 

The notation and understandings are those of  the earlier paper  (Foster, 
1978), referred to henceforth as I. In particular, the coordinates for 5 ~+ are 
x ~ = u and xi(i = 2, 3) [though the last two are soon replaced by the complex 
coordinate z=l(x2+ix3)] and differentiation of f(u,  x ~) with respect to 
xA(A = 0, 2, 3) is denoted byfA(u,  x~). In addition, it should be understood 
that an asymptotic symmetry transformation is a finite, nontrivial transforma- 
tion, which may be derived from the identity in a continuous manner  by 
integrating its infinitesimal generators. The asymptotic symmetry group for- 
med by such transformations is therefore a continuous group. 

Conformal  transformations of  three kinds enter into the discussion. 
The first is a conformal transformation of the metric whereby the metric 
tensor field is multiplied by a scalar field that, at each point of  the manifold 
involved, is finite and nonzero (the singular behavior at ~r of  the mapping 

-~ ~//from the physical to the unphysical space-time being an exception). 
A property that does not change under such a transformation is conformally 
invariant. The second is a conformal motion, which is an angle-preserving 
diffeomorphism of a manifold onto itself, derivable from the identity in a 
continuous manner. The third is a conformal mapping, which is an angle- 
preserving bijection of  a two-surface or a complex domain onto a two- 
surface or a complex domain. The statement that A is conformal to B will 
mean either that a conformal transformation of the metric of  A yields that 
of  B or that B is the image of A under a conformal mapping,  the context 
making it clear which is meant. This terminology is used consistently 
throughout the paper. 

2. A S Y M P T O T I C  TWO-SURFACES 

As is shown in I (Section 2), the approach of Newman and Unti linked 
with the conformal approach of Penrose leads to the line element 

ds~ = �89 xk)]-260 �9 dx i dx j (1) 

for 56+. Setting x j=  const gives a curve in ~r for which ds~ = 0; that is, it 
is a null curve. Such curves, which are, in fact, null geodesics in the 
unphysical space ~/, are the generators of ~r and u acts as a parameter  
along each generator. Setting u = const gives an asymptotic two-surface S(u), 
whose line element is also (1) and for which x i act as isothermal coordinates. 
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A general asymptotic two-surface is given by setting u = F(xi) ,  where F is 
arbitrary. The theory requires that P(u, x ~) be a differentiable function of 
its arguments, so that each S(u)  has a differentiable metric tensor field. If 
this property is to be enjoyed by the general asymptotic two-surfaces, then 
F must be differentiable. The picture that emerges for •+ is that of a bundle 
of generators, a slice of which is an asymptotic two-surface. 

The fact that the resulting two-surfaces possess isothermal coordinate 
systems means that certain regularity conditions have been assumed (see, 
for example, Bers, 1957). If  one makes the further assumption that the 
two-surfaces are orientable, then they can be regarded as Riemann surfaces 
in a natural way. Thus, if z =�89 ix 3) and Z'=I(x2'"~ ix y) are complex 
coordinates given by isothermal coordinates x i and x i' (the inclusion of the 
factor one-half being for later convenience), then 

z' = f ( z )  (2) 

where f is analytic, and, by restricting the coordinates to be isothermal, an 
analytic structure (in the complex sense) is given to each two-surface. [See 
Bers (1957) for details.] With the complex coordinate z replacing the x i, 
(1) becomes 

ds 2 = 2[P(u, z, e)] -2 dz de (3) 

The intention is to exploit the uniformization theory of Riemann surfaces 
to try to introduce a simple form for P(u, z, 2) and then to examine the 
asymptotic symmetry. However, there are problems: because of the depen- 
dence of P on u, what is simple for one value of u is not necessarily simple 
for any other. 

The basic result of the uniformization theory of Riemann surfaces is 
that any simply connected Riemann surface may be mapped by a one-to-one 
analytic function onto exactly one of the following domains: 

(a) The extended complex plane C*=  C w {oo}. 
(b) The complex plane C. 
(c) The open unit disk D ={z I [z[ < 1} 

In case (a) the surface is conformal to a sphere and is said to be elliptic, 
in case (b) it is conformal to a plane and is said to be parabolic, and in 
case (c) it is conformal to a hyperbolic plane (of which D is a model) and 
is said to be hyperbolic. 

The domains C*, C, and D may be thought of as standard domains 
and associated with them are the standard line elements. 

4 dzd~ 
ds~ ( l+Kze)  2 (4) 
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of  the unit sphere (K = 1), the plane (K = 0), and the unit hyperbolic plane 
(K = -1) .  [The line element (4) is that of a surface of' constant curvature 
K.] However, for the subsequent discussion C and D are too special. If  C* 
is identified with the unit sphere in the usual way (i.e., by stereographic 
projection), then C may be regarded as a punctured sphere, the puncture 
caused by removing the point oo. The more general domain in case (b) is 
a punctured sphere obtained by removing any point, and in case (c) is any 
simply connected domain having more than one boundary point. [For a 
verification of these and subsequent remarks about Riemann surfaces, see, 
for example, Springer (1957), in particular Chapter 9.] 

It is worth noting here for later use that any conformal mapping of C* 
onto itself is a M6bius transformation 

z -.'. (az + b) / (cz  + d) (5) 

(conventionally normalized by a d - b c =  1); that any conformal mapping 
of a punctured sphere onto a punctured sphere is given by a M6bius 
transformation mapping the puncture into the puncture, so that, in par- 
ticular, a conformal mapping of C onto itself has the form 

z ~ az + b (6) 

and that any conformal mapping of D onto itself has the form 

z-~ (az + b ) / ( &  + ~) (7) 

where ]a[2-lb[ 2= 1. [M6bius transformations are extensively discussed in 
Schwerdtfeger (1962).] 

Now, suppose for simplicity that each S(u)  is orientable and simply 
connected (but see Section 5 for a relaxation of  the latter condition). Then 
by the above, each S(u)  is conformal to either (a) a sphere, (b) a plane, 
or (c) a hyperbolic plane, and which one it is will, in general, depend on 
u. The corresponding domain D(u)  of z will also depend on u. So one can 
picture a situation like that illustrated in Fig. 1, where, as u increases, S(u)  
passes through a sequence of being conformal to a sphere, then a plane, 
then a hyperbolic plane, then a plane again, and finally a sphere again. [A 
dimension is, of  course, suppressed. Slices are either circles, circles with a 
point removed, or circles with an arc removed, representing domains D(u)  
corresponding to surfaces S(u)  that are conformal to a sphere, a plane or 
a hyperbolic plane, respectively. The straight line segments represent gen- 
erators.] 

A simple example is given by letting S(u)  be a (simply connected, 
orientable) surface with Gaussian curvature equal to - u ,  which can be 
achieved by setting 

p(u ,  z, ~) -- (1 - uz~)/ , / f f  (8) 
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Fig. 1. Asymptotic two-surfaces. 

Then, for u <0 ,  S(u) is a sphere and D(u) is C*; for u = 0, S(u) is a plane 
and D ( u ) = C ;  while for u > 0 ,  S(u) is a surface of constant negative 
curvature and 

D(u) = {z] Izl < 1/~/-ff}. 

3. NULL ANGLES AND CONFORMAL TRANSFORMATIONS OF 
THE METRIC 

The main result of I is that an asymptotic symmetry transformation 
may be defined as a conformal motion of 5 ~+ that, in addition, preserves 
null angles, and this is the definition used here. The reason for favoring 
this definition is that it is conformally invariant, provided, of course, that 
the definition of equality of null angles is conformally invariant. In I (Section 
3) the means of comparing null angles suggested by Penrose was replaced 
by a simpler working definition, which gave a way of measuring the size 
of a null angle in terms of the coordinates (u, x ~) and the quantity P(u, xi), 
and it is important to understand the sense in which this working definition 
is conformally invariant. 

As explained in ! (Section 2), to obtain ~+ one goes through the 
following procedure. One first replaces Newman and Unti's radial coordin- 
ate r by l =  1/r. Next one obtains the unphysical space-time ~ with line 
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element ds 2 from the physical space-time ~ with line element dg 2 by means 
of  the conformal transformation of the metric ds 2= 12 dg 2. Finally, one sets 
l =0  in ~ to obtain 5 ~+ with line element ds 2 given by (1). Thus, in a precise 
way, the coordinate r determines the line element ds2o of  5 ~+, and changing 
r induces a conformal transformation of the metric of 5 ~+. Equations (2.6) 
of I give the allowed coordinate transformations and show that a change 
in the coordinate u given by 

u'= Vo(u, xi)+ O(r-') (9) 

induces the change in 1 given by 

I'= Vo,o(U, xi) l+ O(r -2) (10) 

which therefore induces the conformal transformation of the metric of 5 ~+ 
under which 

dS2._> [ V0,0(U,/i)]2 Ms20 (11) 

[Note that the second of  equations (2.6) of I has an error. The correct 
equation is r ' =  Rl(u, xi)r+ O(1).] The size of the null angle as defined in 
I is invariant under this induced conformal transformation of the metric 
provided that u is replaced by u' defined by 

u'= Vo(u, x') (12) 

which is the form that (9) takes on 5 ~+, where l = 0. 
In short, to maintain conformal invariance in measuring null angles 

one should regard any conformal transformation of the metric of 5 ~+ as 
being generated by a change in the coordinate u, as given by (12), which 
induces the transformation (11) in the line element of 5 t+. In the discussion 
below, such transformations are used to simplify P(u, z, ~). 

4. ASYMPTOTIC SYMMETRY 

As shown in I, a conformal motion of 5 ~+ is given by two functions V 
and Y that map the point with coordinates (u, z) to that with coordinates 
(V(u, z, ~), Y(z)).  The function V is real-valued and differentiable, while 
Y is complex-valued and analytic. {See I, (2.16). That Y (z )=  
�89 YZ(xi)q- iY3(xi)] is analytic follows from I, (2.17), which are the Cauchy- 
Riemann equations for Y.} To be an asymptotic symmetry transformation, 
the additional requirement that the motion preserve null angles must be 
satisfied. This means that V and Y are connected by the equation 

t'(V(u,z,e), V(z), Y(z))Vo(u,z,e)=lV'(z)[l'(u,z,~) (13) 
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This was not given in I, but may be deduced by taking the definition of the 
size 0 of a null angle as given in I (Section 3) (see I, Fig. 1), noting that 
under a conformal motion 

l u , -  Uzl V o(u, z, 

and 

d 
2'/21dz[ 2 '/2] y'(z)l [dz I 

P(u, z, e) P(V(u, z, e), Y(z), Y(z)) 

(to first order of small quantities) and then imposing the condition that 0 
be preserved. [Alternatively, it may be deduced from I, (2.8) by putting 
P ' =  P and changing from x i to z.] 

Under a conformal motion of ~+ the generator z is mapped onto the 
generator Y(z) and the asymptotic two-surface S(uo) is mapped onto that 
given by u = V(uo, z, ~). Moreover, this mapping between two-surfaces is 
conformal (see I, Section 2). If ~+ has a "tear" as in Fig. 1, then some 
generators are complete, while others are incomplete, and Y must not mix 
these. Also, slices of ~+ yield two-surfaces of all three kinds (i.e., elliptic, 
parabolic, and hyperbolic) and V must be such that, for all u, S(u) is 
mapped onto a surface of the same kind. These observations place severe 
restrictions on Y and V, which, together with the further condition that 
(13) be satisfied, suggest that asymptotic symmetry transformations do not 
exist, unless the structure of ~+ is in some way special. It seems possible 
to compile a catalogue giving all the special configurations for which ~+ 
possesses asymptotic symmetry, but there seems little to be gained from 
completing the task. The following discussion is confined to a few configur- 
ations sufficient to illustrate the sort of asymptotic symmetry groups that 
can arise and to facilitate the discussion of supertranslations. In this section 
all asymptotic two-surfaces are simply connected, but in the next, brief 
consideration is given to relaxing this condition. 

4.1. All Two-Surfaces Elliptic 

Each S(u) is conformal to a sphere, so D(u) = C* for all u, and [from 
(3) and (4)] 

P(u, z, ~) = J(u, z, ~)(1 + z~)/,,/2 (14) 

where J(u, z, 2) is finite and nonzero for all points in 5 ~+. A conformal 
transformation of the metric of ~r (generated by a change in the coordinate 
u, as explained in Section 3) can be used to make J(u, z, ~) = 1, so that 

n(u, z, ~)= (1 + z~)/x/2 (15) 
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The only restriction on Y is that it should map C* onto itself. Hence it is 
'a M6bius transformation, 

Y(z)  = (az + b)/(cz  + d) (16) 

where, without loss of generality, ad - bc = 1. In order that (13) be satisfied, 

V(u, z, ~)= K(z,  Y.)u + a(z, Y.) (17) 

where 

and here 

K(z,  ~.) = Z * Z / Z * A * A Z  (18) 

(and a star denotes the conjugate transpose). The function a is real-valued, 
differentiable, but otherwise arbitrary, with domain C*. 

The transformation described here is, of  course, a BMS transformation 
with a(z, ~) giving the supertranslation part. 

4.2. All Two-Surfaces  Parabol ic  

Each S(u)  is conformal to a plane, so each D(u) is a punctured sphere: 

D(u) = C*\{to(u)} (20) 

where to(u) is a point of  C*. It is convenient to treat the case where to(u) 
is constant separately from those in which it varies. 

4.2.1. to(u) Constant 

There is no loss of  generality in having t o ( u ) - - ~ ,  so each S(u) has 
the standard domain D(u) - -C ,  and [from [3] and (4)] 

P(u, z, ~) = J(u, z, ~)/v/2 (21) 

where J(u, z, ~) is finite and nonzero for all points in ~+. Again, by a 
conformal  transformation of the metric, one can make J(u, z, :?) = 1, so that 

P(u, z, ~) = 1/v/2 

The restriction on Y is that it should map C onto itself, and it is therefore 
an affine transformation, 

Y(z)  = az + b (22) 

In order that (13) be satisfied, 

V(u, z, ~) = laIu + a(z, ~) (23) 
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where a is a real-valued, differentiable, but otherwise arbitrary function 
with domain C. 

The transformation is similar to a BMS transformation, with a(z ,  ~) 
giving a supertranslation. 

4.2.2. co(u) Not  Constant 

A suitable form for P(u,  z, 5) can be obtained by noting that, for each 
value of u, there is a M6bius transformation (depending on u) that maps 
w(u)  ~ oo and yields a line element that is J(u,  z, ~) times the standard line 
element (4) (with K = 0), where the factor J(u,  z, ~) can be set equal to unity 
by a conformal transformation of the metric of 5 ~+. If this transformation is 

a ( u ) z + b ( u )  
z ~ (24) 

c(u)[z-o~(u)] 

where 

- a ( u ) c ( u ) w ( u )  - b (u )e (u )  = 1 

then the condition that it yield the standard metric implies that 

e (  u, z, 5) = I c( u )lZl z - co( u )12/ 4 2  (25) 

There is still some freedom to adjust P(u,  z, ~) by choosing c(u) appropri- 
ately, and this will be exploited to give simple expressions for the asymptotic 
symmetry transformations. 

The set of punctures forms a curve in 5 ~+ (for P being ditterentiable 
requires that w be differentiable and therefore continuous) and its projection 
(via generators) gives a curve y in C*, given parametrically by u ~  w(u) .  
If ( u, z) ~ ( V( u, z, ~), Y (  z ) ) is an asymptotic symmetry transformation, then 
Y must be a M/~bius transformation leaving y invariant, since, for each u, 
the puncture w(u)  that determines the domain D ( u )  of S(u )  must be 
mapped into the puncture determining the domain of the image of  S(u) .  
For a general curve, there is no such Mfbius transformation other than the 
identity. If Y ( z ) =  z, then applying condition (13) to P as given by (25) 
results in V(u,  z, ~) = u, showing that, for a general 7, no asymptotic sym- 
metry transformation exists. However, certain curves are invariant under 
M6bius transformations and these lead to asymptotic symmetry groups. 
There are essentially two cases to consider, according as the Mfbius transfor- 
mation has one or two fixed points. 

Suppose first that z ~ Y ( z )  has one fixed point. Without loss of  general- 
ity this can be taken to be ~ ,  and then Y is simply a translation 

z ~ z + C (C complex) 
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which leaves invariant any straight line with direction C. This leads to the 
following special case. 

Case A. If 

co (u)  = A u  + co o (A, coo complex constants) 

and if, in (25), ]e(u)l--1 [which can be achieved by taking a ( u ) = 0 ,  
- b ( u )  = e(u)  = 1 in (24)], then, for all a ~ R, 

V ( u , z , ~ ) = u + a ,  Y ( z ) = z + A a  (26) 

is an asymptotic symmetry transformation [as can be checked using (12) 
and (25)]. 

On the other hand, if z--> Y ( z )  has two fixed points, then taking these 
to be 0 and ~ results in 

z - Cz ( C complex) 

which represents a dilatation with scale factor IC [ combined with a rotation 
through an angle arg C. This leaves invariant curves that are logarithmic 
spirals (including circles if lCI = 1 and straight lines if arg C = 0) and results 
in the following special case. 

Case B. If  

co(u) = cooA u (A,  coo complex constants) 

and if, in (25), [c(u)[ 2 = 1/[co(u)[ {which can be achieved by taking - a ( u )  = 
c (u) - - [co(u)]  -1/2, b(u) =0  in (24)}, then, for all a c R ,  

V(u, z, ~.) = u + a, Y ( z )  = Adz  (27) 

is an asymptotic symmetry transformation (as is readily checked). 
In either case the asymptotic symmetry transformations [as given by 

(26) or (27)] form a group isomorphic to the additive group of real numbers 
(R, +). 

4.3. All Two-Surfaces Hyperbolic  

Each S ( u )  is conformal to a hyperbolic plane, s0each D ( u )  is a simply 
connected domain whose boundary has more than one point. As with a 
parabolic two-surface, it is convenient to consider the case where D ( u )  is 
constant separately from those in which is varies with u. 

4.3.1. D(u )  Constant. 

The constant domain D ( u )  can be mapped onto the standard domain 
D = {z] ]z I < 1}, so that D becomes the domain for all S(u) .  Then [from (3) 
and (4)] 

P(u, z, ~)= J(u, z, ~)(1 -z~)/,/~ (2s) 
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where J(u, z, ~) is finite and nonzero for all points in 5 ~§ and by a conformal 
transformation of the metric of 5 ~+ one can make J(u, z, ~) = 1, giving 

P(u, z, 5) = (1 - z~.)/v~ (29) 

Since Y must map D onto itself, it has the form 

Y(z) = (az + b)/(gz+ a) (30) 

where lal2-1bl 2= 1, and, in order that (12) be satisfied, 

V(u, z, ~) = u + ~(z, e) (31) 
where a is a real-valued, differentiable, but otherwise arbitrary function 
with domain D. 

The transformation is similar to a BMS transformation, with a(z, ~) 
giving a supertranslation. 

4.3.2. D(u) Not Constant. 

The situation here is more complicated than the corresponding situation 
in the case of parabolic two-surfaces. The reason is that it is not possible 
to give a general form for P(u, z, ~) analogous to (25), due to the fact that 
for a given general D(u) there is no simple analogue of (24). [The analogue 
is a transformation involving a parameter u, which, for each value of u, 
maps D(u) onto the unit disk D.] However, it is clear that there will be no 
asymptotic symmetry unless D(u) is special. 

Suppose, for example, that for some choice of the coordinate z, each 
D(u) is a circle, with center o-(u) and radius p(u), say. Then 

z ~ [ z -  cr(u)]/p(u) (32) 

maps D(u) onto D and yields the standard line element (4) (with • = -1 )  
if 

P ( u ,  z, e) = {[ p ( u ) ]  2 - I z  - o-(u)12}/2'/2p(u) (33) 

All transformations from D(u) onto D yield (33) and of these (32) is the 
simplest to write down. There is no freedom to adjust P(u, z, ~) by adjusting 
the transformation, like that embodied in (25), where le(u) l  2 can be varied. 
There is, of  course, freedom to multiply P(u, z, ~) by a factor J(u, z, ~), 
corresponding to a conformal translation of the metric of ~+, but this will 
not be used, as (33) yields convenient expressions in the special cases below. 

Case A. If 

r  p(u)=po 
(A, ~ro complex constants; Po real, positive constant), then, for all o~ ~ R, 

V(u , z ,~ )=u+a,  Y(z)=z+Ao~ (34) 

is an asymptotic symmetry transformation. 



1118 Foster 

Case B. If  

o'(u) = O-o Au , p(u)=polA[ u 

(A, tro complex constants; Po real, positive constant), then, for all a c R, 

V(u, z, ~) = u + a, Y ( z )  : Adz (35) 

is an asymptotic symmetry transformation. 

Case C. If  o'(u) = 0 and p(u)  is arbitrary, then, for all 0 ~ R, 

V(u, z, ~) = u, Y ( z )  = ei~ (36) 

is an asymptotic symmetry transformation. 
In cases A and B, the asymptotic symmetry groups are isomorphic to 

(R, +), and each is similar to the corresponding special case where the 
two-surfaces are parabolic. However, case C has no parabolic counterpart 
and the group here is isomorphic to S0(2 ,  R). These three cases do not 
exhaust all possibilities: a fourth special case has tr(u) = 0 and p(u)  = poC u 
(C real and positive) and yields a group isomorphic to (R, +) • S0(2 ,  R). 

4.4. Two-Surfaces of All Three Kinds 

It is not necessary that the asymptotic two-surfaces be all of  the same 
kind for asymptotic symmetry transformations to exist. The example at the 
end of Section 2 with P(u, z, ~) given by (8) is like this and, for all 0 ~ R, 

V(u, z, ~) = u, Y ( z )  = ei~ (37) 

is an asymptotic symmetry transformation. Such transformations form a 
group isomorphic to S0(2 ,  R). 

5. T O P O L O G I C A L  IDENTIFICATIONS 

A Riemann surface S is not in general simply connected, but its 
universal covering surface S is. One.constructs S from S by identifying 
points that are equivalent under elements of a covering group F [see Springer 
(1957), in particular Chapter 9]. This idea may be extended to 5 ~ by taking 
the simply~ connected two-surfaces S(u)  of Sections 2 and 4 to be covering 
surfaces S(u)  and introducing a family of covering groups F(u), each of 
which has elements that identify points in S(u)  to yield a two surface S(u)  
that is not simply connected. The claim is that, for the special cases presented 
in Section 4, it is possible to introduce covering groups F(u) in such a way 
that the asymptotic symmetry is retained. While the discussion here does 
not consider all cases, sufficient is done to illustrate the idea and to lend 
support to the claim. 
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The cases most readily disposed of are those in which the domain D(u)  
of ;~(u) does not depend on u. There are three such cases: that of elliptic 
two-surfaces discussed in Section 4.1, that of parabolic two-surfaces dis- 
cussed in Section 4.2.1, and that of hyperbolic two-surfaces discussed in 
Section 4.3.1. As argued above, one can arrange things so that 

P(u, z, 5) = (1 + KzS)/x/2 (38) 

where K = 1, 0, or -1 ,  and it can be seen that the space-times involved are 
just the ones having the DS-spaces of Robinson and Trautman (1962) as 
prototypes. The question of introducing topological identifications into the 
DS-spaces and its effect on asymptotic symmetry was discussed in an earlier 
paper (Foster, 1969). The results for these prototypes [summarized in Table 
2 of Foster (1969)] hold for the more general space-times considered here. 

For example, in the parabolic case, where each S(u) is conformal to 
a plane and each D(u)  = C, the covering group F(u) consisting of transfor- 
mations 

z ~ z + mh (39) 

where h c C and rn = 0, +1, + 2 , . . . ,  identifies points in S(u) whose coordin- 
ates differ by a multiple of h. This has the effect of rolling up S(u) to obtain 
S(u)  as a cylinder. For equations (22) and (23) to represent an asymptotic 
symmetry transformation of ~ + with cylindrical two-surfaces S (u), a further 
condition must be satisfied: identified points must be mapped into identified 
points. This condition is satisfied if Y [as given by (22)] commutes with 
each element of F(u) [as given by (39)] and if a(z, 5) [occurring in (23)] 
satisfies 

a(z  + mA, ~. + rnA) = a(z, 5) (40) 

for all m =0,  +1, + 2 , . . . .  The commutativity requirement means that in 
(22) a = 1, so an asymptotic symmetry transformation has the form 

V(u,  z, 5) = u + ~ ( z ,  5) 
(41) 

Y(z )  = z + b 

where a satisfies (40). 
In this example, the covering group F(u) does not depend on u, and 

the construction of S(u)  from S(u) is the same for all u. This is typical of 
all cases where D(u)  is constant and where P(u, z, 5) can be brought to 
one of the forms (38). However, if D(u)  is not constant, then any F(u) will 
depend on u and the situation is more complicated. 

Consider, for example, case B of Section 4.2.2, where each two-surface 
A 

S(u)  is a punctured sphere and the curve of punctures is a spiral [given by 
w(u) = woA"], and suppose one wishes to introduce F(u) so that each S(u)  
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is rolled up into a cylinder S(u),  but in such a way that asymptotic symmetry 
is retained. In place of  (39) one has the M6bius transformation y(m, u) 
defined by 

(1 - m,~ )z + (cooA~mA ) 
z --> (_coola_Um A )z + (1 + mA ) (42) 

This form for y(m, u) can be obtained by mapping D ( u ) ~  C by means of 
(24) with - a ( u ) =  c(u)= [co(u)] -1/2 and b(u)=0. Note that y(m, u) maps 
w(u) into itself, as it should. The asymptotic symmetry transformation (27) 
remains an asymptotic symmetry transformation without further restriction, 
because it maps identified points into identified points. The last assertion 
follows from the fact that, for all m and u, the identity 

yo  y(rn, u)=y(m,  u+a)o  Y (43) 

holds, as is readily checked using (27) and (42). (This replaces the commuta- 
tivity requirement of the previous example.) 

In a similar way one  can give covering transformations that roll each 
S(u) up into a cylinder in case A of Section 4.2.2, where the curve of 
punctures is a straight line. They have the form 

[ 1 - (Au + COo)mA ] z + (Au + COo)2mh 
z ~ (44) 

( - m h ) z  + [1 + (au + COo) rnA ] 

Equations (26) continue to represent an asymptotic covering transformation 
without further restriction. 

The other kind of  multiply connected surface that has a parabolic 
covering surface is a torus, and the covering transformations (39), (42), and 
(44) are easily adapted so that they identify points in S(u) to yield a torus 
for S(u):  one simply replaces mA by mh+n/~ ( A , / ~ C ;  m,n=O, +1, 
+2 , . . . ) .  

The handling of asymptotic two-surfaces having hyperbolic covering 
surfaces is somewhat more complicated and is not considered here. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

If the generators of  ~r are complete, then D(u) does not depend on 
u. By taking D(u) to be a standard domain (or a subset forming a funda- 
mental domain, if identifications under a covering group are allowed) one 
has 

P(u, z, Y.) = J(u, z, Z)(1 + KZY.)/x/2 (45) 

where K =0,  +1 and J(u, z, ~) is finite and nonzero for all points of  o r 
and by means of a conformal transformation of the metric (generated by 
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changing the coordinate 
J(u, z, 5) = 1 so that P(u, 

u, as explained in Section 3) 
z, 5) takes on a standard form 

P(z, ~) = (1 + KzS)/x/2 

one can make 

(46) 

which does not depend on u. If (u, z ) ~  (V(u, z, 5), Y(z)) is an asymptotic 
symmetry transformation, then Y is restricted to mapping the standard 
domain onto itself (and to commuting with any covering transformations) 
and V o(u, z, 5) is then determined in terms of P(z, 5) and Y(z): 

V o(u, z, 5) = F(z, 5) (47) 

where 

F(z, 5) = [Y'(z)[P(z, 5) /P(Y(z) ,  Y(z)) (48) 

Hence 

V(u, z, 5)= F(z, 5)u + ,~(z, 5) (49) 

where a is arbitrary, and in this way the transformation is seen to be 
determined by Y and a. 

If Y(z)=z,  then the asymptotic symmetry transformation reduces to 

(u, z)--, (u + o4z, 5), z) (50) 

which is a supertranslation. A general asymptotic symmetry transformation 
can be regarded as a transformation of the form 

(u, z)-, (F(z, 5)u, V(z)) (51) 

where F(z, 5) is given by (48), followed by a supertranslation (50). It is a 
straightforward matter to verify that the asymptotic symmetry transforma- 
tions form a group ASG (the asymptotic symmetry group of the particular 
.r under consideration), that the supertranslations form a normal subgroup 
ST of ASG, and that the transformations of  the form (51) form a group 
CT isomorphic to one of classical type [e.g., SL(2, C)]. In fact, ST >~ CT = 
ASG, where >~ denotes the semidirect product. 

The essential points to note are (1) if the generators of ~r are complete, 
then D(u) is constant and one can arrange things so that P(u, z, 5) does 
not depend on u, (2) this means that N+ is conformal to a product manifold, 
and (3) an asymptotic symmetry group exists and has a normal subgroup 
of supertranslations. The use of standard domains and standard forms for 
P(z, 5) is not essential, but leads to simple forms for the asymptotic symmetry 
transformations. 
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On the other hand, if5 ~+ has incomplete generators, then it is impossible 
to arrange things so that P(u, z, ~) is independent of u and in general no 
asymptotic symmetry group exists. However, there may be special configur- 
ations (like those discussed in Section 4) where asymptotic symmetry groups 
do exist, though none of these contains supertranslations. In their original 
paper, Newman and Unti give a transformation that rids P(u, z, ~) of its u 
dependence. Clearly, unless 5 ~+ is conformal to a product manifold, such 
a transformation can have only local validity. As remarked in I, ridding 
P(u, z, ~) of its u dependence is equivalent to ridding the generators of 
their divergence. 

It can be seen that a supertranslation represents the freedom to map 
each generator of 5 ~+ onto itself while preserving null angles. For a coordin- 
ate u that yields a form for P(u, z, ~) independent of u, this map has the 
form u ~ u + a(z,  ~), giving a translation of  each generator onto itself, but, 
because of  the arbitrariness in a (z, ~), this translation varies from generator 
to generator. It is clear from the way in which null angles are measured 
(see I, Section 3) why, with P(u, z, ~) independent of u, this arbitrary sliding 
of the generators into themselves preserves null angles. 

Stipulating that 5 ~+ is homeomorphic to R x S  2 implies that each 
asymptotic two-surface is elliptic, which is sufficient to deduce that 5 ~+ is 
conformal to a product manifold and therefore that there exists an 
asymptotic symmetry group, complete with supertranslations, namely the 
BMS group, as explained in Section 4.1. However, it is only in this case 
that the topological structure of ~+ alone is sufficient to determine its 
conformal structure and therefore its asymptotic symmetry group. For 
example, stipulating that 5 ~+ is homeomorphic to R 3, implying that each 
asymptotic two-surface is homeomorphic to R ~, is insufficient, for that 
admits both parabolic and hyperbolic two-surfaces. Even if one were more 
precise and stipulated in addition that, for example, each two-surface were 
parabolic, then still the asymptotic symmetry is not determined, and one 
must explain how the two-surfaces are put together so as to yield the overall 
conformal structure of 5 ~+ and thereby distinguish between the various cases 
considered in Section 4.2. 

The approach to the conformal structure of 5 ~+ adopted here is based 
on treating the asymptotic two-surfaces as Riemann surfaces and leads to 
a model of 5 ~+ (in the case where the two-surfaces are simply connected) 
as a subset of  R x C*. If the two-surfaces are not all elliptic, then this is a 
proper subset having a boundary (as illustrated in Fig. 1). Any conformal 
motion of 5 ~+ onto itself must leave this boundary invariant, and unless 
this boundary possesses some sort of symmetry, then no such motion will 
exist. This is essentially why there is in general no asymptotic symmetry in 
the cases where 5 ~+ is not homeomorphic to R • S 2. The exceptional cases 
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are of  two kinds. The first has the boundary of 5 ~+ comprising generators, 
so that it is conformal to a product manifold and has an asymptotic symmetry 
group with a subgroup of supertranslations. The second has the boundary 
of 5 ~+ invariant under a special motion such as the sliding motions repre- 
sented by (26) and (34), the screwing motions represented by (27) and (35), 
and the rotational motions represented by (36) and (37). The asymptotic 
symmetry group then has a simple structure without supertranslations. 

It has been argued that any reasonable definition of asymptotic flatness 
should have 5t + homeomorphic  to R x S  2 (Penrose, 1965; Persides, 1979) 
and that the space-times admitted by Newman and Unti 's original definition 
are not necessarily asymptotically flat, despite their having the correct 
"falloff" behavior as one goes out to infinity in a given null direction 
(Ludwig, 1981). I f  the space-times are to represent radiation from isolated 
sources, then the argument in favor of R x S 2 is strong and no alternative 
is being suggested here. Indeed, one  can give support  to that argument as 
follows. 

The DS-spaces of Robinson and Trautman have line elements 

ds2=(K-2m/r) du2+2 dudr-4r2(l+Kz~) -2 dzd~ (52) 

where m is a nonzero constant and K = •  or 0, and for these ~r is a 
product manifold with asymptotic two-surfaces that are elliptic if K = 1, 
parabolic if K = 0, and hyperbolic if K = - 1  (Foster, 1969). Each of these 
space-times has a well-defined, flat-space-time, electromagnetic analogue. 
That corresponding to K = 1 is singular along a timelike line, being the 
Coulomb field of  a point charge, which is the electromagnetic analogue of 
the Schwarzschild field. However, the electromagnetic fields corresponding 
to K = 0 and K = -1  are singular on null hypersurfaces, both of which extend 
to spatial infinity (Foster, 1971). Hence, only in the case where K = 1 is the 
source of the electromagnetic field spatially bounded. Thus, via the 
Robinson-Trautman prototypes and their electromagnetic analogues, one 
can argue that in order to represent radiation from isolated sources, the 
asymptotic two-surfaces of  5 ~+ should be elliptic, i.e., that 5 ~+ should be 
homeomorphic  to R x S 2. 
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